Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
In Vivo ; 37(1): 70-78, 2023.
Article in English | MEDLINE | ID: covidwho-2204978

ABSTRACT

BACKGROUND/AIM: The manifestation and severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections show a clear correlation to the age of a patient. The younger a person, the less likely the infection results in significant illness. To explore the immunological characteristics behind this phenomenon, we studied the course of SARS-CoV-2 infections in 11 households, including 8 children and 6 infants/neonates of women who got infected with SARS-CoV-2 during pregnancy. MATERIALS AND METHODS: We investigated the immune responses of peripheral blood mononuclear cells (PBMCs), umbilical cord blood mononuclear cells (UCBCs), and T cells against spike and nucleocapsid antigens of SARS-COV-2 by flow cytometry and cytokine secretion assays. RESULTS: Upon peptide stimulation, UCBC from neonates showed a strongly reduced IFN-γ production, as well as lower levels of IL-5, IL-13, and TNF-α alongside with decreased frequencies of surface CD137/PD-1 co-expressing CD4+ and CD+8 T cells compared with adult PBMCs. The PBMC response of older children instead was characterized by elevated frequencies of IFN-γ+ CD4+ T cells, but significantly lower levels of multiple cytokines (IL-5, IL-6, IL-9, IL-10, IL-17A, and TNF-α) and a marked shift of the CD4+/CD8+ T-cell ratio towards CD8+ T cells in comparison to adults. CONCLUSION: The increased severity of SARS-CoV-2 infections in adults could result from the strong cytokine production and lower potential to immunomodulate the excessive inflammation, while the limited IFN-γ production of responding T cells in infants/neonates and the additional higher frequencies of CD8+ T cells in older children may provide advantages during the course of a SARS-CoV-2 infection.


Subject(s)
Antigens, Viral , COVID-19 , Cytokines , Adult , Child , Female , Humans , Infant, Newborn , Pregnancy , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Cytokines/immunology , Leukocytes, Mononuclear/immunology , Nucleocapsid/immunology , SARS-CoV-2 , Age Factors , Antigens, Viral/immunology , CD4-Positive T-Lymphocytes/immunology
2.
J Clin Invest ; 132(23)2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2064379

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein is the main antigen in all approved COVID-19 vaccines and is also the only target for monoclonal antibody (mAb) therapies. Immune responses to other viral antigens are generated after SARS-CoV-2 infection, but their contribution to the antiviral response remains unclear. Here, we interrogated whether nucleocapsid-specific antibodies can improve protection against SARS-CoV-2. We first immunized mice with a nucleocapsid-based vaccine and then transferred sera from these mice into naive mice, followed by challenge with SARS-CoV-2. We show that mice that received nucleocapsid-specific sera or a nucleocapsid-specific mAb exhibited enhanced control of SARS-CoV-2. Nucleocapsid-specific antibodies elicited NK-mediated, antibody-dependent cellular cytotoxicity (ADCC) against infected cells. To our knowledge, these findings provide the first demonstration in the coronavirus literature that antibody responses specific to the nucleocapsid protein can improve viral clearance, providing a rationale for the clinical evaluation of nucleocapsid-based mAb therapies to treat COVID-19.


Subject(s)
Antibodies, Monoclonal , COVID-19 , Nucleocapsid , Animals , Mice , Antibodies, Monoclonal/pharmacology , Antibodies, Viral , COVID-19/therapy , COVID-19 Vaccines , Nucleocapsid/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology
3.
Front Immunol ; 13: 835830, 2022.
Article in English | MEDLINE | ID: covidwho-1902993

ABSTRACT

CD8+ T cells have key protective roles in many viral infections. While an overall Th1-biased cellular immune response against SARS-CoV-2 has been demonstrated, most reports of anti-SARS-CoV-2 cellular immunity have evaluated bulk T cells using pools of predicted epitopes, without clear delineation of the CD8+ subset and its magnitude and targeting. In recently infected persons (mean 29.8 days after COVID-19 symptom onset), we confirm a Th1 bias (and a novel IL-4-producing population of unclear significance) by flow cytometry, which does not correlate to antibody responses against the receptor binding domain. Evaluating isolated CD8+ T cells in more detail by IFN-γ ELISpot assays, responses against spike, nucleocapsid, matrix, and envelope proteins average 396, 901, 296, and 0 spot-forming cells (SFC) per million, targeting 1.4, 1.5, 0.59, and 0.0 epitope regions respectively. Nucleocapsid targeting is dominant in terms of magnitude, breadth, and density of targeting. The magnitude of responses drops rapidly post-infection; nucleocapsid targeting is most sustained, and vaccination selectively boosts spike targeting. In SARS-CoV-2-naïve persons, evaluation of the anti-spike CD8+ T cell response soon after vaccination (mean 11.3 days) yields anti-spike CD8+ T cell responses averaging 2,463 SFC/million against 4.2 epitope regions, and targeting mirrors that seen in infected persons. These findings provide greater clarity on CD8+ T cell anti-SARS-CoV-2 targeting, breadth, and persistence, suggesting that nucleocapsid inclusion in vaccines could broaden coverage and durability.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Nucleocapsid/immunology , SARS-CoV-2/physiology , Antibodies, Viral/metabolism , Broadly Neutralizing Antibodies/metabolism , Cells, Cultured , Enzyme-Linked Immunospot Assay , Humans , Molecular Targeted Therapy , Peptides/genetics , Peptides/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , United States , Vaccination
4.
Neurol Neuroimmunol Neuroinflamm ; 9(2)2022 03.
Article in English | MEDLINE | ID: covidwho-1745397

ABSTRACT

BACKGROUND AND OBJECTIVES: Information about humoral and cellular responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and antibody persistence in convalescent (COVID-19) patients with multiple sclerosis (PwMS) is scarce. The objectives of this study were to investigate factors influencing humoral and cellular responses to SARS-CoV-2 and its persistence in convalescent COVID-19 PwMS. METHODS: This is a retrospective study of confirmed COVID-19 convalescent PwMS identified between February 2020 and May 2021 by SARS-CoV-2 antibody testing. We examined relationships between demographics, MS characteristics, disease-modifying therapy (DMT), and humoral (immunoglobulin G against spike and nucleocapsid proteins) and cellular (interferon-gamma [IFN-γ]) responses to SARS-CoV-2. RESULTS: A total of 121 (83.45%) of 145 PwMS were seropositive, and 25/42 (59.5%) presented a cellular response up to 13.1 months after COVID-19. Anti-CD20-treated patients had lower antibody titers than those under other DMTs (p < 0.001), but severe COVID-19 and a longer time from last infusion increased the likelihood of producing a humoral response. IFN-γ levels did not differ among DMT. Five of 7 (71.4%) anti--CD20-treated seronegative patients had a cellular response. The humoral response persisted for more than 6 months in 41/56(81.13%) PwMS. In multivariate analysis, seropositivity decreased due to anti-CD20 therapy (OR 0.08 [95% CI 0.01-0.55]) and increased in males (OR 3.59 [1.02-12.68]), whereas the cellular response decreased in those with progressive disease (OR 0.04 [0.001-0.88]). No factors were associated with antibody persistence. DISCUSSION: Humoral and cellular responses to SARS-CoV-2 are present in COVID-19 convalescent PwMS up to 13.10 months after COVID-19. The humoral response decreases under anti-CD20 treatment, although the cellular response can be detected in anti-CD20-treated patients, even in the absence of antibodies.


Subject(s)
COVID-19/immunology , Immunity, Cellular , Immunity, Humoral , Multiple Sclerosis/immunology , Adult , Aged , Antibodies, Viral/analysis , Antigens, CD20/immunology , COVID-19/complications , Female , Humans , Immunoglobulin G/analysis , Interferon-gamma/biosynthesis , Interferon-gamma/immunology , Male , Middle Aged , Multiple Sclerosis/complications , Nucleocapsid/chemistry , Nucleocapsid/immunology , Retrospective Studies
5.
Cell ; 185(5): 896-915.e19, 2022 03 03.
Article in English | MEDLINE | ID: covidwho-1670278

ABSTRACT

The emerging SARS-CoV-2 variants of concern (VOCs) threaten the effectiveness of current COVID-19 vaccines administered intramuscularly and designed to only target the spike protein. There is a pressing need to develop next-generation vaccine strategies for broader and long-lasting protection. Using adenoviral vectors (Ad) of human and chimpanzee origin, we evaluated Ad-vectored trivalent COVID-19 vaccines expressing spike-1, nucleocapsid, and RdRp antigens in murine models. We show that single-dose intranasal immunization, particularly with chimpanzee Ad-vectored vaccine, is superior to intramuscular immunization in induction of the tripartite protective immunity consisting of local and systemic antibody responses, mucosal tissue-resident memory T cells and mucosal trained innate immunity. We further show that intranasal immunization provides protection against both the ancestral SARS-CoV-2 and two VOC, B.1.1.7 and B.1.351. Our findings indicate that respiratory mucosal delivery of Ad-vectored multivalent vaccine represents an effective next-generation COVID-19 vaccine strategy to induce all-around mucosal immunity against current and future VOC.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Immunity, Mucosal , Administration, Intranasal , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , COVID-19/virology , COVID-19 Vaccines/immunology , Cytokines/blood , Genetic Vectors/genetics , Genetic Vectors/immunology , Genetic Vectors/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Neutralization Tests , Nucleocapsid/genetics , Nucleocapsid/immunology , Nucleocapsid/metabolism , Pan troglodytes , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
6.
Int J Infect Dis ; 112: 103-110, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1654539

ABSTRACT

OBJECTIVES: Monitoring the antibody responses to SARS-CoV-2 infection and its correlation to clinical spectrum of disease is critical in understanding the disease progression and protection against re-infection. We assessed the nucleocapsid (N) and receptor-binding-domain of spike (SRBD) protein specific IgG and neutralizing antibody (NAb) responses in COVID-19 patients up to 8 months and its correlation with diverse disease spectrum. METHODS: During the first wave of the SARS-CoV-2 pandemic, from 284 COVID-19 patients, 608 samples were collected up to 8 months post infection. The patients were categorized as asymptomatic, symptomatic and severe. The N and SRBD IgG and NAb titers were evaluated and correlated with clinical data. RESULTS: A steep increase in antigen specific antibody titers was observed till 40 days post onset of the disease (POD), followed by a partial decline till 240 days. Severe disease was associated with a stronger SRBD IgG response and higher NAb titers. The persistence of antibody response was observed in 76% against N, 80% against SRBD and 80% for NAbs of cases up to 8 months POD. CONCLUSION: RBD and N protein specific IgG persisted till 240 days POD which correlated with NAb response, irrespective of individual`s symptomatic status indicating overall robust protection against re-infection.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 , Nucleocapsid/immunology , Spike Glycoprotein, Coronavirus/immunology , COVID-19/immunology , Humans , SARS-CoV-2
7.
PLoS One ; 17(1): e0262169, 2022.
Article in English | MEDLINE | ID: covidwho-1633137

ABSTRACT

Current SARS-CoV-2 serological assays generate discrepant results, and the longitudinal characteristics of antibodies targeting various antigens after asymptomatic to mild COVID-19 are yet to be established. This longitudinal cohort study including 1965 healthcare workers, of which 381 participants exhibited antibodies against the SARS-CoV-2 spike antigen at study inclusion, reveal that these antibodies remain detectable in most participants, 96%, at least four months post infection, despite having had no or mild symptoms. Virus neutralization capacity was confirmed by microneutralization assay in 91% of study participants at least four months post infection. Contrary to antibodies targeting the spike protein, antibodies against the nucleocapsid protein were only detected in 80% of previously anti-nucleocapsid IgG positive healthcare workers. Both anti-spike and anti-nucleocapsid IgG levels were significantly higher in previously hospitalized COVID-19 patients four months post infection than in healthcare workers four months post infection (p = 2*10-23 and 2*10-13 respectively). Although the magnitude of humoral response was associated with disease severity, our findings support a durable and functional humoral response after SARS-CoV-2 infection even after no or mild symptoms. We further demonstrate differences in antibody kinetics depending on the antigen, arguing against the use of the nucleocapsid protein as target antigen in population-based SARS-CoV-2 serological surveys.


Subject(s)
COVID-19/pathology , Immunity, Humoral , Adult , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Asymptomatic Infections/epidemiology , COVID-19/immunology , COVID-19/virology , Female , Health Personnel , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Longitudinal Studies , Male , Middle Aged , Nucleocapsid/immunology , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology
8.
Nat Commun ; 13(1): 153, 2022 01 10.
Article in English | MEDLINE | ID: covidwho-1616980

ABSTRACT

Anti-viral immunity continuously declines over time after SARS-CoV-2 infection. Here, we characterize the dynamics of anti-viral immunity during long-term follow-up and after BNT162b2 mRNA-vaccination in convalescents after asymptomatic or mild SARS-CoV-2 infection. Virus-specific and virus-neutralizing antibody titers rapidly declined in convalescents over 9 months after infection, whereas virus-specific cytokine-producing polyfunctional T cells persisted, among which IL-2-producing T cells correlated with virus-neutralizing antibody titers. Among convalescents, 5% of individuals failed to mount long-lasting immunity after infection and showed a delayed response to vaccination compared to 1% of naïve vaccinees, but successfully responded to prime/boost vaccination. During the follow-up period, 8% of convalescents showed a selective increase in virus-neutralizing antibody titers without accompanying increased frequencies of circulating SARS-CoV-2-specific T cells. The same convalescents, however, responded to vaccination with simultaneous increase in antibody and T cell immunity revealing the strength of mRNA-vaccination to increase virus-specific immunity in convalescents.


Subject(s)
BNT162 Vaccine/immunology , COVID-19/immunology , Convalescence , Nucleocapsid/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/administration & dosage , COVID-19/virology , Cytokines/immunology , Cytokines/metabolism , Flow Cytometry/methods , Follow-Up Studies , Humans , Immunoglobulin G/immunology , Interleukin-2/immunology , Interleukin-2/metabolism , Kinetics , SARS-CoV-2/physiology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/virology , Time Factors , Vaccination/methods
9.
Pathog Dis ; 80(1)2022 02 09.
Article in English | MEDLINE | ID: covidwho-1612517

ABSTRACT

Given the emergence of SARS-CoV-2 virus as a life-threatening pandemic, identification of immunodominant epitopes of the viral structural proteins, particularly the nucleocapsid (NP) protein and receptor-binding domain (RBD) of spike protein, is important to determine targets for immunotherapy and diagnosis. In this study, epitope screening was performed using a panel of overlapping peptides spanning the entire sequences of the RBD and NP proteins of SARS-CoV-2 in the sera from 66 COVID-19 patients and 23 healthy subjects by enzyme-linked immunosorbent assay (ELISA). Our results showed that while reactivity of patients' sera with reduced recombinant RBD protein was significantly lower than the native form of RBD (P < 0.001), no significant differences were observed for reactivity of patients' sera with reduced and non-reduced NP protein. Pepscan analysis revealed weak to moderate reactivity towards different RBD peptide pools, which was more focused on peptides encompassing amino acids (aa) 181-223 of RBD. NP peptides, however, displayed strong reactivity with a single peptide covering aa 151-170. These findings were confirmed by peptide depletion experiments using both ELISA and western blotting. Altogether, our data suggest involvement of mostly conformational disulfide bond-dependent immunodominant epitopes in RBD-specific antibody response, while the IgG response to NP is dominated by linear epitopes. Identification of dominant immunogenic epitopes in NP and RBD of SARS-CoV-2 could provide important information for the development of passive and active immunotherapy as well as diagnostic tools for the control of COVID-19 infection.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Immunodominant Epitopes/immunology , Nucleocapsid/immunology , Receptors, Virus/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Aged , Amino Acid Motifs , Antibodies, Viral/blood , COVID-19/virology , Enzyme-Linked Immunosorbent Assay/methods , Female , Humans , Immunodominant Epitopes/chemistry , Iran , Male , Middle Aged , Pandemics , Peptides/immunology , Protein Binding , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Viral Proteins/immunology
10.
Viral Immunol ; 34(10): 708-713, 2021 12.
Article in English | MEDLINE | ID: covidwho-1595620

ABSTRACT

The coronavirus infectious disease 2019 (COVID-19), which is initiated by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has imposed critical challenges to global health. Understanding the kinetic of SARS-CoV-2-specific IgM and IgG responses in different subsets of COVID-19 patients is crucial to get insight into the humoral immune response elicited against the virus. We investigated IgM and IgG responses against SARS-CoV-2 nucleocapsid (N) and receptor-binding domain (RBD) of spike protein in two groups of recovered and deceased COVID-19 patients. The levels of IgM and IgG specific to N and RBD proteins were detected by ELISA. N- and RBD-specific IgM was higher in deceased patients in comparison with recovered patients, while there was no significant difference in N- and RBD-specific IgG between the two groups. A significant correlation was observed between IgG and IgM titers against RBD and N, in both groups of patients. These results argue against impaired antibody response in deceased COVID-19 patients.


Subject(s)
Antibodies, Viral/analysis , Antibodies, Viral/immunology , Antibody Formation , Antigens, Viral/immunology , COVID-19/immunology , COVID-19/mortality , SARS-CoV-2/immunology , Female , Humans , Immunoglobulin G/analysis , Immunoglobulin G/immunology , Immunoglobulin M/analysis , Immunoglobulin M/immunology , Iran/epidemiology , Male , Middle Aged , Nucleocapsid/chemistry , Nucleocapsid/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology
11.
Front Immunol ; 12: 793953, 2021.
Article in English | MEDLINE | ID: covidwho-1572289

ABSTRACT

Durability of SARS-CoV-2 Spike antibody responses after infection provides information relevant to understanding protection against COVID-19 in humans. We report the results of a sequential evaluation of anti-SARS-CoV-2 antibodies in convalescent patients with a median follow-up of 14 months (range 12.4-15.4) post first symptom onset. We report persistence of antibodies for all four specificities tested [Spike, Spike Receptor Binding Domain (Spike-RBD), Nucleocapsid, Nucleocapsid RNA Binding Domain (N-RBD)]. Anti-Spike antibodies persist better than anti-Nucleocapsid antibodies. The durability analysis supports a bi-phasic antibody decay with longer half-lives of antibodies after 6 months and antibody persistence for up to 14 months. Patients infected with the Wuhan (WA1) strain maintained strong cross-reactive recognition of Alpha and Delta Spike-RBD but significantly reduced binding to Beta and Mu Spike-RBD. Sixty percent of convalescent patients with detectable WA1-specific NAb also showed strong neutralization of the Delta variant, the prevalent strain of the present pandemic. These data show that convalescent patients maintain functional antibody responses for more than one year after infection, suggesting a strong long-lasting response after symptomatic disease that may offer a prolonged protection against re-infection. One patient from this cohort showed strong increase of both Spike and Nucleocapsid antibodies at 14 months post-infection indicating SARS-CoV-2 re-exposure. These antibodies showed stronger cross-reactivity to a panel of Spike-RBD including Beta, Delta and Mu and neutralization of a panel of Spike variants including Beta and Gamma. This patient provides an example of strong anti-Spike recall immunity able to control infection at an asymptomatic level. Together, the antibodies from SARS-CoV-2 convalescent patients persist over 14 months and continue to maintain cross-reactivity to the current variants of concern and show strong functional properties.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Binding Sites, Antibody/immunology , COVID-19/virology , Cohort Studies , Cross Reactions/immunology , Female , Humans , Male , Middle Aged , Neutralization Tests/methods , Nucleocapsid/immunology , Nucleocapsid/metabolism , Protein Binding/immunology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Time Factors
12.
Nat Commun ; 12(1): 6853, 2021 11 25.
Article in English | MEDLINE | ID: covidwho-1537313

ABSTRACT

Transfer of convalescent plasma (CP) had been proposed early during the SARS-CoV-2 pandemic as an accessible therapy, yet trial results worldwide have been mixed, potentially due to the heterogeneous nature of CP. Here we perform deep profiling of SARS-CoV-2-specific antibody titer, Fc-receptor binding, and Fc-mediated functional assays in CP units, as well as in plasma from hospitalized COVID-19 patients before and after CP administration. The profiling results show that, although all recipients exhibit expanded SARS-CoV-2-specific humoral immune responses, CP units contain more functional antibodies than recipient plasma. Meanwhile, CP functional profiles influence the evolution of recipient humoral immunity in conjuncture with the recipient's pre-existing SARS-CoV2-specific antibody titers: CP-derived SARS-CoV-2 nucleocapsid-specific antibody functions are associated with muted humoral immune evolution in patients with high titer anti-spike IgG. Our data thus provide insights into the unexpected impact of CP-derived functional anti-spike and anti-nucleocapsid antibodies on the evolution of SARS-CoV-2-specific response following severe infection.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/therapy , Immunity , Immunization, Passive/methods , Plasma/immunology , Antibodies, Neutralizing/immunology , Blood Donors , Humans , Immunity, Humoral , Nucleocapsid/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , COVID-19 Serotherapy
13.
Transl Res ; 240: 26-32, 2022 02.
Article in English | MEDLINE | ID: covidwho-1492708

ABSTRACT

Antibodies to the nucleocapsid (N) antigen are suggested to be used to monitor infections after COVID-19 vaccination, as first generation subunit vaccines are based on the spike (S) protein. We used multiplex immunoassays to simultaneously measure antibody responses to different fragments of the SARS-CoV-2 S and N antigens for evaluating the immunogenicity of the mRNA-1273 (Spykevax) and the BNT162b2 (Comirnaty) vaccines in 445 health care workers. We report a >4-fold increase post-vaccination of IgG levels to the full length (N FL) and C-terminus of N (N CT) in 5.2% and 18.0% of individuals, respectively, and of IgA in 3.6% (N FL) and 9.0% (N CT) of them. The increase in IgG levels and avidity was more pronounced after Spykevax than Comirnaty vaccination (36.2% vs 13.1% for N CT, and 10.6% vs 3.7% for N FL). Data suggest the induction of cross-reactive antibodies against the N CT region after administering these S-based vaccines, and this should be taken into account when using N seropositivity to detect breakthroughs.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Nucleocapsid/immunology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , COVID-19/virology , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Longitudinal Studies
14.
Sci Rep ; 11(1): 20323, 2021 10 13.
Article in English | MEDLINE | ID: covidwho-1467136

ABSTRACT

This study aimed to develop a highly sensitive SARS-CoV-2 nucleocapsid antigen assay using the single molecule array (Simoa) technology and compare it with real time RT-PCR as used in routine clinical practice with the ambition to achieve a comparative technical and clinical sensitivity. Samples were available from 148 SARS-CoV-2 real time RT-PCR positive and 73 SARS-CoV-2 real time RT-PCR negative oropharyngeal swabs. For determination of technical sensitivity SARS-CoV-2 virus culture material was used. The samples were treated with lysis buffer and analyzed using both an in-house and a pre-commercial SARS-CoV-2 nucleocapsid antigen assay on Simoa. Both nucleocapsid antigen assays have a technical sensitivity corresponding to around 100 SARS-CoV-2 RNA molecules/mL. Using a cut-off at 0.1 pg/mL the pre-commercial SARS-CoV-2 nucleocapsid antigen assay had a sensitivity of 96% (95% CI 91.4-98.5%) and specificity of 100% (95% CI 95.1-100%). In comparison the in-house nucleocapsid antigen assay had sensitivity of 95% (95% CI 89.3-98.1%) and a specificity of 100% (95% CI 95.1-100%) using a cut-off at 0.01 pg/mL. The two SARS-CoV-2 nucleocapsid antigen assays correlated with r = 0.91 (P < 0.0001). The in-house and the pre-commercial SARS-CoV-2 nucleocapsid antigen assay demonstrated technical and clinical sensitivity comparable to real-time RT-PCR methods for identifying SARS-CoV-2 infected patients and thus can be used clinically as well as serve as a reference method for antigen Point of Care Testing.


Subject(s)
COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Antigens, Viral/immunology , COVID-19 Serological Testing/methods , Coronavirus Nucleocapsid Proteins/analysis , Denmark , Diagnostic Tests, Routine , Humans , Immunoenzyme Techniques , Nasopharynx/virology , Nucleocapsid/analysis , Nucleocapsid/immunology , Phosphoproteins/analysis , Phosphoproteins/immunology , SARS-CoV-2/pathogenicity , Sensitivity and Specificity , Single Molecule Imaging/methods , Virion/chemistry
15.
PLoS One ; 16(9): e0257743, 2021.
Article in English | MEDLINE | ID: covidwho-1435621

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroprevalence studies bridge the gap left from case detection, to estimate the true burden of the COVID-19 pandemic. While multiple anti-SARS-CoV-2 immunoassays are available, no gold standard exists. METHODS: This serial cross-sectional study was conducted using plasma samples from 8999 healthy blood donors between April-September 2020. Each sample was tested by four assays: Abbott SARS-Cov-2 IgG assay, targeting nucleocapsid (Abbott-NP) and three in-house IgG ELISA assays (targeting spike glycoprotein, receptor binding domain, and nucleocapsid). Seroprevalence rates were compared using multiple composite reference standards and by a series of Bayesian Latent Class Models. RESULT: We found 13 unique diagnostic phenotypes; only 32 samples (0.4%) were positive by all assays. None of the individual assays resulted in seroprevalence increasing monotonically over time. In contrast, by using the results from all assays, the Bayesian Latent Class Model with informative priors predicted seroprevalence increased from 0.7% (95% credible interval (95% CrI); 0.4, 1.0%) in April/May to 0.7% (95% CrI 0.5, 1.1%) in June/July to 0.9% (95% CrI 0.5, 1.3) in August/September. Assay characteristics varied over time. Overall Spike had the highest sensitivity (93.5% (95% CrI 88.7, 97.3%), while the sensitivity of the Abbott-NP assay waned from 77.3% (95% CrI 58.7, 92.5%) in April/May to 64.4% (95% CrI 45.6, 83.0) by August/September. DISCUSSION: Our results confirmed very low seroprevalence after the first wave in Canada. Given the dynamic nature of this pandemic, Bayesian Latent Class Models can be used to correct for imperfect test characteristics and waning IgG antibody signals.


Subject(s)
COVID-19/immunology , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Viral/immunology , Bayes Theorem , Blood Donors , Canada , Cross-Sectional Studies , Female , Humans , Immunoglobulin G/immunology , Male , Middle Aged , Nucleocapsid/immunology , Pandemics/prevention & control , Sensitivity and Specificity , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus/immunology , Young Adult
16.
Viruses ; 13(9)2021 09 15.
Article in English | MEDLINE | ID: covidwho-1411088

ABSTRACT

COVID-19 is an ongoing pandemic with high morbidity and mortality. Despite meticulous research, only dexamethasone has shown consistent mortality reduction. Convalescent plasma (CP) infusion might also develop into a safe and effective treatment modality on the basis of recent studies and meta-analyses; however, little is known regarding the kinetics of antibodies in CP recipients. To evaluate the kinetics, we followed 31 CP recipients longitudinally enrolled at a median of 3 days post symptom onset for changes in binding and neutralizing antibody titers and viral loads. Antibodies against the complete trimeric Spike protein and the receptor-binding domain (Spike-RBD), as well as against the complete Nucleocapsid protein and the RNA binding domain (N-RBD) were determined at baseline and weekly following CP infusion. Neutralizing antibody (pseudotype NAb) titers were determined at the same time points. Viral loads were determined semi-quantitatively by SARS-CoV-2 PCR. Patients with low humoral responses at entry showed a robust increase of antibodies to all SARS-CoV-2 proteins and Nab, reaching peak levels within 2 weeks. The rapid increase in binding and neutralizing antibodies was paralleled by a concomitant clearance of the virus within the same timeframe. Patients with high humoral responses at entry demonstrated low or no further increases; however, virus clearance followed the same trajectory as in patients with low antibody response at baseline. Together, the sequential immunological and virological analysis of this well-defined cohort of patients early in infection shows the presence of high levels of binding and neutralizing antibodies and potent clearance of the virus.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , Nucleocapsid/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Viral Load , Aged , Aged, 80 and over , Antibody Formation/immunology , COVID-19/therapy , Female , Host-Pathogen Interactions , Humans , Immunization, Passive , Kinetics , Male , Middle Aged , COVID-19 Serotherapy
18.
PLoS One ; 16(7): e0255208, 2021.
Article in English | MEDLINE | ID: covidwho-1332001

ABSTRACT

Serologic assays developed for SARS-CoV-2 detect different antibody subtypes and are based on different target antigens. Comparison of the performance of a SARS-CoV-2 Spike-Protein ELISA and the nucleocapsid-based Abbott ArchitectTM SARS-CoV-2 IgG assay indicated that the assays had high concordance, with rare paired discordant tests results.


Subject(s)
Antibodies, Viral/immunology , COVID-19/diagnosis , Immunoglobulin G/immunology , Nucleocapsid Proteins/immunology , Nucleocapsid/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/virology , Child , Child, Preschool , Enzyme-Linked Immunosorbent Assay/methods , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Sensitivity and Specificity , Young Adult
19.
JCI Insight ; 6(13)2021 07 08.
Article in English | MEDLINE | ID: covidwho-1301767

ABSTRACT

BACKGROUNDThe role of humoral immunity in COVID-19 is not fully understood, owing, in large part, to the complexity of antibodies produced in response to the SARS-CoV-2 infection. There is a pressing need for serology tests to assess patient-specific antibody response and predict clinical outcome.METHODSUsing SARS-CoV-2 proteome and peptide microarrays, we screened 146 COVID-19 patients' plasma samples to identify antigens and epitopes. This enabled us to develop a master epitope array and an epitope-specific agglutination assay to gauge antibody responses systematically and with high resolution.RESULTSWe identified linear epitopes from the spike (S) and nucleocapsid (N) proteins and showed that the epitopes enabled higher resolution antibody profiling than the S or N protein antigen. Specifically, we found that antibody responses to the S-811-825, S-881-895, and N-156-170 epitopes negatively or positively correlated with clinical severity or patient survival. Moreover, we found that the P681H and S235F mutations associated with the coronavirus variant of concern B.1.1.7 altered the specificity of the corresponding epitopes.CONCLUSIONEpitope-resolved antibody testing not only affords a high-resolution alternative to conventional immunoassays to delineate the complex humoral immunity to SARS-CoV-2 and differentiate between neutralizing and non-neutralizing antibodies, but it also may potentially be used to predict clinical outcome. The epitope peptides can be readily modified to detect antibodies against variants of concern in both the peptide array and latex agglutination formats.FUNDINGOntario Research Fund (ORF) COVID-19 Rapid Research Fund, Toronto COVID-19 Action Fund, Western University, Lawson Health Research Institute, London Health Sciences Foundation, and Academic Medical Organization of Southwestern Ontario (AMOSO) Innovation Fund.


Subject(s)
Agglutination Tests/methods , Antibody Formation/immunology , COVID-19 Serological Testing/methods , COVID-19/immunology , Epitopes, B-Lymphocyte/immunology , SARS-CoV-2/immunology , Amino Acid Sequence , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibody Specificity/immunology , COVID-19/blood , COVID-19/mortality , Epitopes/immunology , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/genetics , Humans , Immunity, Humoral , Microarray Analysis/methods , Nucleocapsid/chemistry , Nucleocapsid/genetics , Nucleocapsid/immunology , Peptides/immunology , SARS-CoV-2/genetics , Severity of Illness Index , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
20.
J Appl Lab Med ; 6(4): 1005-1011, 2021 07 07.
Article in English | MEDLINE | ID: covidwho-1301364

ABSTRACT

BACKGROUND: SARS-CoV-2 serologic assays are becoming increasingly available and may serve as a diagnostic aid in a multitude of settings relating to past infection status. However, there is limited literature detailing the longitudinal performance of EUA-cleared serologic assays in US populations, particularly in cohorts with a remote history of PCR-confirmed SARS-CoV-2 infection (e.g., >2 months). METHODS: We evaluated the diagnostic sensitivities and specificities of the Elecsys® Anti-SARS-CoV-2 (anti-N) and Elecsys Anti-SARS-CoV-2 S (anti-S1-RBD) assays, using 174 residual clinical samples up to 267 days post-PCR diagnosis of SARS-CoV-2 infection (n = 154) and a subset of samples obtained prior to the COVID-19 pandemic as negative controls (n = 20). RESULTS: The calculated diagnostic sensitivities for the anti-N and anti-S1-RBD assays were 89% and 93%, respectively. Of the 154 samples in the SARS-CoV-2-positive cohort, there were 6 discrepant results between the anti-N and anti-S1-RBD assays, 5 of which were specimens collected ≥200 days post-PCR positivity and only had detectable levels of anti-S1-RBD antibodies. When only considering specimens collected ≥100 days post-PCR positivity (n = 41), the sensitivities for the anti-N and anti-S1-RBD assays were 85% and 98%, respectively. CONCLUSIONS: The anti-S1-RBD assay demonstrated superior sensitivity at time points more remote to the PCR detection date, with 6 more specimens from the SARS-CoV-2-positive cohort detected, 5 of which were collected more than 200 days post-PCR positivity. While analytical differences and reagent lot-to-lot variability are possible, this may indicate that, in some instances, anti-S1-RBD antibodies may persist longer in vivo and may be a better target for detecting remote SARS-CoV-2 infection.


Subject(s)
Antibodies, Viral/blood , COVID-19 Testing/methods , COVID-19/diagnosis , Nucleocapsid/immunology , Polymerase Chain Reaction/methods , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/genetics , COVID-19/virology , Europe , Humans , Longitudinal Studies , Predictive Value of Tests , Reagent Kits, Diagnostic , SARS-CoV-2/genetics , SARS-CoV-2/immunology , United States
SELECTION OF CITATIONS
SEARCH DETAIL